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Abstract

M Learned habitual responses to environmental stimuli allow
efficient interaction with the environment, freeing cognitive re-
sources for more demanding tasks. However, when the out-
come of such actions is no longer a desired goal, established
stimulus—response (S-R) associations or habits must be over-
come. Among people with substance use disorders (SUDs), dif-
ficulty in overcoming habitual responses to stimuli associated
with their addiction in favor of new, goal-directed behaviors
contributes to relapse. Animal models of habit learning demon-
strate that chronic self-administration of drugs of abuse pro-
motes habitual responding beyond the domain of compulsive
drug seeking. However, whether a similar propensity toward
domain-general habitual responding occurs in humans with
SUDs has remained unclear. To address this question, we used
a visuomotor S-R learning and relearning task, the Hidden

INTRODUCTION

Learned habitual responses to stimuli allow efficient
navigation of daily life by allocating cognitive resources
toward processes such as cognitive control, which enables
flexible behavioral. However, when the outcome of such
habitual actions is no longer a desirable goal, established
stimulus—response (S-R) associations must be overcome. A
definitive behavior of addiction is continued drug use
despite serious negative consequences of such use. In
essence, although the outcome of drug seeking and/or
consumption is reduced in value from mostly positive to
mixed or largely negative, these actions persist and can be
potently triggered by drug-associated cues. As such, addic-
tion may be partially described as an initially goal-directed
behavior that becomes a habit-based process as a con-
sequence of reinforcement learning during repeated drug
use (Belin, Belin-Rauscent, Murray, & Everitt, 2013; Everitt
& Robbins, 2005, 2013; Balleine & O’Doherty, 2010; Belin,
Jonkman, Dickinson, Robbins, & Everitt, 2009). Despite
the clinical importance of understanding the maladaptively
rigid behaviors that characterize substance use disorders
(SUDs), investigation of behavioral rigidity in SUDs has
been limited to date.

Data from animal models show that extended cocaine
(Zapata, Minney, & Shippenberg, 2010; Belin & Everitt,
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Association between Images Task, which employs abstract visual
stimuli and manual responses. This task allows us to measure
new S-R association learning and well-learned S-R association
execution and includes a response contingency change manip-
ulation to quantify the degree to which responding is habit-
based, rather than goal-directed. We find that people with SUDs
learn new S-R associations as well as healthy control participants
do. Moreover, people with an SUD history slightly outperform
controls in S-R execution. In contrast, people with SUDs are
specifically impaired in overcoming well-learned S-R associa-
tions; those with SUDs make a significantly greater proportion
of perseverative errors during well-learned S-R replacement,
indicating the more habitual nature of their responses. Thus,
with equivalent training and practice, people with SUDs appear
to show enhanced domain-general habit formation. |l

2008) or alcohol use (Corbit, Nie, & Janak, 2012; Dickinson,
Wood, & Smith, 2002) promotes habitual behavior, sug-
gesting that chronic exposure to drugs of abuse potentiates
habitual responding more generally. In contrast to what is
known in animals, relatively little is known about habit
learning in humans, or whether addiction is associated with
altered general capacity to learn or replace S-R associations,
that is, to form or break habits. Either enhanced habit for-
mation or impaired ability to overcome habits could theo-
retically contribute to addiction.

Animal studies of S-R learning are typically limited to
simple one-to-one mapping of stimuli onto response op-
tions, and although such designs have been used with hu-
mans (Toni, Ramnani, Josephs, Ashburner, & Passingham,
2001; Deiber et al., 1997), people learn such associations
rapidly, limiting their use for examining learning over time
and measuring transitions between goal-directed and ha-
bitual response selection. Moreover, habitual responding
in animals is typically tested via outcome devaluation, with
continued responding for a devalued outcome taken to in-
dicate habitual responding (Dickinson, 1985). Outcome de-
valuation studies in humans replicate animal studies of
simple S-R learning tasks (de Wit, Corlett, Aitken, Dickinson,
& Fletcher, 2009; Tricomi, Balleine, & O’Doherty, 2009;
Valentin, Dickinson, & O’Doherty, 2007), but such designs
have substantial methodological limitations in humans. In
particular, it is very difficult to identify multiple primary
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reinforcers equated for value across individuals that may
then be devalued according to traditional animal paradigms.
This difficulty precludes their use with special populations,
which pose other recruitment challenges, and renders them
ill-suited to multisession tests of interventions to reduce
habitual responding. Furthermore, these paradigms lack
ecological validity for modeling stimulus-driven (i.e., habit-
based) actions in the “real world.” During daily life, it is less
often the case that the outcome of a no-longer adaptive
action loses value; rather, it is that the outcome itself
changes to one that is less (or un-) desirable. For example,
the cue of walking into a darkened room will often trigger
the automatic action of flipping the light switch. During a
power outage, this action will yield no positive outcome,
and yet this automatic action will persist despite its known
lack of utility. In this case, the former outcome of this action
(illumination of the darkened room) retains its value, but
that is simply no longer the outcome of flipping the light
switch. Likewise, in the case of maladaptive habit-based
actions, such as compulsive drug use during a binge, the
same action (e.g., lighting and smoking from a crack pipe)
will no longer yield the initial outcome, a euphoric “high,”
instead producing agitation and paranoid delusions. Again,
the former outcome of this action (a euphoric high state)
retains its value, but it is no longer the outcome of the
action. Most work in humans to date has overcome these
obstacles by instead employing probabilistic learning tasks
(Dolan & Dayan, 2013). However, although such paradigms
are useful in investigating the ability to flexibly adapt to
dynamic response contingencies, these paradigms cannot
promote enduring habitual responses to stimuli. Our task,
although simplistic, provides a useful laboratory-based
model of these sort of S-R outcome contingency changes
that are a natural part of human life.

Few studies to date have investigated the relationship
between habitual behavior and drugs of abuse in humans.
First, adult smokers demonstrate both goal-directed and
habitual responding for natural rewards and cigarettes,
dependent on age, smoking habit severity, and impulsive-
ness (Hogarth, Chase, & Baess, 2012; Hogarth & Chase,
2011). Second, a recent neuroimaging study in alcohol-
dependent patients, including those concurrently using
psychoactive medications for depression and anxiety disor-
ders, found preferential habit-based responding during
task performance at the expense of goal-directed behavior
(Sjoerds et al., 2013); however, confounding factors pre-
clude strong linkage between habitual responding and
alcohol use disorders.

Finally, no published work to date has investigated the
transition between goal-directed and habitual response
selection during S-R formation or the replacement of S-R
associations in people with SUDs. To address this knowl-
edge gap, we compared S-R association learning and re-
placement between healthy adults with no SUD history
and currently abstinent people with a lifetime SUD diag-
nosis (Table 1). We predicted that an SUD history would
associate with enhanced capacity to acquire new S-R asso-

ciations and impaired ability to replace established re-
sponses, with a specific increase in perseverative responding
when attempting to change established S-R associations.
To test these ideas, we employed the Hidden Association
between Images Task (HABIT; Figure 1), a visuomotor S-R
learning and relearning task with abstract visual stimuli
and manual responses. As the behavioral data were not
normally distributed, we applied generalized linear
mixed-effects models (GLMMs) to characterize the change
in behavioral performance over time, evaluating whether
SUD status uniquely accounts for significant variability in
learning and/or relearning trajectories across individuals.

METHODS
Participants

A total of 62 participants were recruited from the University
of North Carolina at Chapel Hill (UNC) and the surround-
ing community via advertisements. Participants were re-
cruited into two groups, based on whether they did (z =
22 SUD) or did not (n = 40 control; Ctrl) meet DSM-1V cri-
teria for past drug or alcohol dependence in a structured
clinical interview (zz = 7 alcohol, n = 4 opiates, n = 11
stimulants, of which 7 = 13 were polysubstance abusers;
Sheehan et al., 1998). SUD participants self-reported a min-
imum of 2 weeks of abstinence at the time of recruitment
M = 2 = 2.5 years). All participants were healthy individ-
uals 18-40 years old with no known history of neurological
disorders, no current psychiatric diagnoses (7 = 5 SUDs
met criteria for past depression) or psychoactive drug or
medication use (excluding nicotine and caffeine), and re-
ported an IQ within the normal range (=80). Participants
were screened for psychoactive drug use (Biotechnostix,
Inc., Markham, Ontario), including alcohol (FC-10, Lifeloc,
Inc., Wheat Ridge, CO) in each session. Thirteen additional
participants were recruited but failed to complete the train-
ing session (see “Behavioral Task”), and another 12 partic-
ipants failed to return for or complete the testing session.
As expected, the SUD and control groups differed signifi-
cantly in terms of substance use, with higher scores on
all measures, including family history of alcohol abuse in
the SUD group (Table 1). The SUD and control groups
did not differ significantly in terms of education, socioeco-
nomic status, gender, or ethnicity but did differ in terms of
age and estimated 1Q, with significantly lower average 1Q
and higher average age for the SUD group relative to the
Ctrl group (Table 1); to control for these differences, age
and IQ were included as covariates in all analyses. Each par-
ticipant provided written informed consent as approved by
the UNC Office of Human Research Ethics.

General Procedure

Individuals participated in two sessions, with at least one
night’s sleep between the first and second sessions.
Participants were paid for their involvement, including
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Table 1. Sample Demographics and Psychometric Data

Ctrl (n = 40) SUD (n = 22) 1(60) p
Demographics
Age (years) 246 296 —2.65 .01
SILS (calculated) 1Q 105 £ 6 9 £ 6 4.32 <.001
Education (years) 15 £ 2 15 £ 2 0.40 .69
SES 46 £ 9 41 * 12 1.51 14
Gender (% female) 50 16 ns*
Ethnicity (% non-White) 27 43 28°
Substance Use Related
AUDIT Total 4+3 23 * 10 —8.60 <.001°¢
AUDIT Consumption 3+ 2 8=*+3 —7.28 <.001
AUDIT Dependence 0.08 = 0.35 6=*5 —8.31 <.001°¢
AUDIT Harm 0.78 £ 1.33 8+6 —-7.19 <.001°¢
DAST 1x1 17 =7 —10.79 <.001°¢
DUSII (%) 0.10 = 0.12 0.80 £ 0.18 -16.25 <.001°¢
FTQ density (%) 0.16 + 0.22 0.41 + 023 —4.28 <.001
Psychometric
BDI 3+4 6+6 —1.69 .10¢
BIS Total 55+ 8 68 = 15 —3.61 .001°¢
BIS Attention 14 =3 18 =5 —2.55 .01
BIS Motor 21 £3 25+ 6 —2.73 .01°¢
BIS Nonplanning 20 £ 4 25 £ 6 —4.31 <.001°
LOC 10 =3 8+ 4 1.99 051
MMPI-Antisocial Practices Scale 6=*3 10 =5 —3.57 .001°¢
STAI Total 60 = 15 67 = 15 -1.63 A1
STAIL-State Anxiety 27 =7 29 £ 7 -0.96 34
STAI-Trait Anxiety 33 £ 8 37 £9 —2.02 .048
TAF Total 17 = 13 19 + 14 —0.43 .67
TAF Moral 16 = 11 15 = 10 0.40 .69
TAF Self 1.2+ 21 3.0 3.6 —-2.15 .03¢
TAF Others 0.6 = 1.6 14 = 3.1 —-1.14 26°

Values are reported as mean =+ standard deviation. Reported p values reflect the results of unpaired two-tailed comparison between groups. SUD =
history of SUD participant; Ctrl = control subject; IQ = intelligence quotient; SES = socioeconomic status; AUDIT = Alcohol Use Disorders
Identification Test; DAST = Drug Abuse Screening Test; DUSI-I = Drug Use Screening Inventory, Domain I; FTQ = Family Tree Questionnaire;
BDI = Beck Depression Index; BIS = Barratt Impulsivity Scale; LOC = Locus of Control; MMPI = Minnesota Multiphasic Personality Inventory;
SILS = Shipley Institute of Living Scale; STAI = State-Trait Anxiety Inventory; TAF = Thought Action Fusion Scale. Boldface indicates significant
values.

p value represents results of x° test. nzs: p > .05.
Pp value represents result of Fischer’s exact test.

p value represents results from Satterthwaite method for unequal variances.
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Figure 1. Diagram of HABIT paradigm structure. (A) Panel depicts training session (“Session 0”) and test session (“Session 1”), which occurs on a
subsequent day. Session 1 is divided into Part 1 (preresponse change; six runs) and Part 2 (postresponse change; six runs). (B) Task schematic

for Part 1 (left) and Part 2 (right) of the HABIT test session.

performance bonuses in the second (testing) session. Dur-
ing Session 0, participants first underwent a structured clin-
ical interview, then completed a battery of standard
questionnaires (see “Behavioral Inventories”), followed
by behavioral training on the computerized S-R learning
task (see “Behavioral Task”). Learning and habitual re-
sponding was then tested during Session 1.

Behavioral Inventories

We administered a number of standard questionnaires to
quantify factors that could impact our results. We quanti-
fied alcohol use behavior with the Alcohol Use and Dis-
orders Identification Test (Saunders, Aasland, Babor,

de la Fuente, & Grant, 1993) and substance use behavior
with the Drug Use Screening Inventory, Domain I (Tarter,
1990) and the Drug Abuse Screening Test (Skinner, 1982).
We calculated density of familial alcohol abuse using the
Family Tree Questionnaire (Mann, Sobell, Sobell, & Pavan,
1985). Neuropsychological questionnaires included the
Barratt Impulsivity Scale (Barratt, 1994), the Beck Depres-
sion Inventory (Beck & Steer, 1987), Rotter’s Locus of
Control Scale (Rotter, 1966), the State-Trait Anxiety Inven-
tory (Spielberger, 1985), the Thought Action Fusion Scale
(Shafran, Thordarson, & Rachman, 1996), and the Anti-
social Practices of the Minnesota Multiphasic Personality
Inventory 2 (Butcher, Graham, Williams, & Ben-Porath,
1990). Education and occupation were quantified with
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the Hollingshead Socioeconomic Status score (Hollingshead,
1975). We estimated IQ with the Shipley Institute of Liv-
ing Scale (Zachary, 1991).

Behavioral Task

The HABIT is an S-R learning and relearning task im-
plemented in E-Prime 2.0 (PST, Inc., Pittsburgh, PA) con-
sisting of a HABIT Training Session and a two-part HABIT
Test Session, which occurs on a subsequent day (Figure 1).
The training and test session Part 1 have been described
in detail (Boettiger & D’Esposito, 2005). In brief, stimuli
were presented on a color LCD screen, and participants
used a four-button keypad for manual response selection
using the fingers of their dominant hand. Participants were
given instructions and a brief familiarization before com-
pleting the training phase of the task. Participants viewed
abstract visual stimuli displayed briefly (700 msec) on the
screen that they learned, through trial and error, to asso-
ciate with specific manual responses. During the first train-
ing session, participants learned two sets of S-R rules
(Familiar) to a criterion of 290% accuracy. Participants
then returned after =21 night’s sleep to complete the test
session. In the second testing session, participants first
demonstrated retention of the previously learned (Famil-
iar) associations, then the learning task (HABIT Test Part 1;
Figure 1) began. In the learning task, blocks of the two
Familiar sets were interspersed with blocks composed of
two new (Novel) stimulus sets to measure new S-R learn-
ing and blocks of a control condition, consisting of novel,
unrelated stimuli (No Rule); blocks consisted of 15 ran-
domly selected stimuli from the relevant set. Following
six “runs” of 15 blocks each (three per set type), par-
ticipants were informed that the correct responses for
two sets (one Familiar and one Novel set) had changed
(HABIT Test Part 2; Figure 1). As the previously correct
responses for the changed sets produce a negative rather
than positive outcome, one could construe this change in
response contingency as a response “devaluation,” al-
though this manipulation is quite different from the out-
come devaluation procedures traditionally used in studies
of habitual responding. Devaluing outcomes is methodo-
logically tricky in human studies, as primary rewards are
not universally palatable. Moreover, points (or other per-
formance metrics) or money tends to remain intrinsically
rewarding and is difficult to realistically devalue. Par-
ticipants then learned the new correct S-R associations
through trial and error. This “response devaluation” ma-
nipulation allows us to quantify habitual responding when
attempting to overcome both well-learned (Familiar) and
freshly learned (Novel) S-R associations, as the proportion
of perseverative errors can be taken as an index of the
degree to which responses are outcome independent
(i.e., habit-based), as opposed to outcome driven (i.e.,
goal-directed). By introducing S-R changes for both Famil-
iar and Novel sets, at a point where performance is approx-
imately equivalent, we can rule out performance deficits
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due to impaired response inhibition. Moreover, including
Familiar and Novel sets in which correct responses do not
change allows us to control for effects on performance of
time and of context change.

Data Analysis

Our main index of performance was number of correct
responses out of total responses across both epochs of
the task (six runs each, pre- and post-contingency
change). Our data structure is composed of 48 repeated
measures, consisting of four stimulus set types (2 Famil-
iar, 2 Novel) that are measured within person over the
12 time points. We also collected RT data in each trial
and were able to categorize error types (perseverative
button press, other incorrect button press) postcontin-
gency change to distinguish between habit-based and
goal-directed response strategies. Because of the non-
normal nature of these data, rather than using a mixed
model repeated-measures ANOVA analytical approach,
we instead used a GLMM with a binomial distribution
and logit link function, which models a linear rate of
learning and is ideally suited to account for the nonlinear
nature of learning rates in terms of probability. Our
GLMM approach is described in detail in the next section.
To test the significance of between-group comparisons
for demographic and psychological variables, we used
unpaired two-tailed ¢ tests for continuous measures and
% tests for categorical measures. Additionally, we used a
one-way ANOVA to test for statistically significant differ-
ences between groups in perseverative responding and
the nonparametric Kruskal-Wallis test to compare per-
severative responding among SUD subgroups. All analy-
ses included age and IQ as covariates. All data analyses
were performed within SAS (Cary, NC).

Specification of GLMMs

Performance data in this S-R learning task were the num-
ber of correct responses within each block, a nonnor-
mally distributed outcome heavily skewed toward the
top end of possible values; hence, performance accuracy
was characterized by fitting GLMMs with a binomial dis-
tribution and logit link function. GLMMs provide a statis-
tically efficient way to independently account for variance
at different levels within nested data. In the present in-
stance, repeated measures (performance within six runs
each during the learning and relearning epochs) are
nested within persons, and thus, GLMMs could be spec-
ified to account for both within- and between-person var-
iability in performance accuracy. Our data structure is
composed of 48 repeated measures, consisting of four
stimulus set types (2 Familiar, 2 Novel) that are measured
within person over the 12 time points. The measurement
of accuracy at multiple time points both pre- and post-
contingency change yields increased power to detect
between-subject differences in within-subject change, with
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particular emphasis on the ability to compare pre-
and postcontingency change trajectories and to capture
changes in performance over time. For each set type,
we modeled the time course of performance over each
epoch (pre- and post-contingency change) independently
and also included additional unique variables capturing
the change in performance following the S-R contingency
change manipulation. Our analytic approach involved first
fitting a baseline model (Model 1) to represent changes in
performance accuracy during the learning and relearning
epochs as a function of set type and changed response
contingencies, controlling for age and 1Q. Next, we added
SUD status as a predictor of performance (Model 2) and
conducted a likelihood ratio test to evaluate improvement
in model fit. Models were estimated using maximum like-
lihood in the GLIMMIX procedure of SAS 9.3, imple-
mented using adaptive quadrature with nine quadrature
points per dimension of integration.

Defining m; to be the probability that person j will pro-
duce an accurate response to a stimulus given during run
i, Model 1 was specified as

logit(my) = Boy + B1yTrendly; + ByzDropoffy
+ B3 ChangeTrendy; + B4Age; + PsIQ;
+ wy + uyTrendl; + uyDropoff;
+ uz;ChangeTrend, (D

where fixed effects are designated by B and the first four
fixed effects, which capture changes in performance
accuracy over time and across conditions, are decom-
posed as follows:

P)Oz’j = P)O() + 5015&‘1]
Blzj = BlO + Bllsefy'
Bay = PBao + Ba1Setyy + PrNewResponse;;

+Bx3Set; X NewResponse; @
Bsj = Bso + B31Sety + Pz NewResponse; + BazSety;
X NewResponse;;

Last, the random effects are designated by « and as-
sumed to be normally distributed with a full covariance
matrix G.

The variables within the model were coded to enhance
interpretation of the parameter estimates. The covariates
Age and IQ were mean-centered so that all fixed effects
could be interpreted to represent effects for a participant
of typical Age and 1Q. Trendl was coded —5, —4, ..., 6
for the 12 runs, Dropoff was coded 0 for runs occurring
during the learning epoch and 1 for runs during the re-
learning epoch, and ChangeTrend was coded 0 for runs
occurring during the learning epoch and 1, 2, ..., 6 for
runs during the relearning epoch. Given this coding,
Bo; represents performance at the final run of the learn-
ing epoch, B, represents the increase in accuracy over
the learning epoch, B, represents the drop off in accuracy
between the last run of the learning epoch and the first run
of the relearning epoch due to changes in S-R contingen-

cies, and B3, indicates the difference in rate of improve-
ment in accuracy in the relearning epoch relative to the
learning epoch. Equation 2 shows that the values of these
four coefficients were a function of set type (Set; coded 1
for Familiar, O for Novel) and whether the response was
devalued in the relearning epoch (NewResponse; coded 1
for devalued sets and 0 for nondevalued sets). Addition-
ally, the random effects in Equation 1 allowed for person-to-
person variability in the four components of the performance
accuracy trajectories.

Model 2 retains Equation 1 but includes SUD status as
a predictor such that Equation 2 is elaborated as follows:

Boy = Boo + BoiSety + Bo2SUD; + BozSety; x SUD;
Biy = P1o T BuSety; + B12SUD; + BizSet;; x SUD;
By = P2o + Ba1Set; + BaNewResponse;; + BazSety
x NewResponse;; + P4SUD; + pasSet;; X SUD;
+ BagNewResponse;; x SUD; + pySet;;
X NewResponse;; X SUD; ®)
Bz = Pso + BaiSet;; + BalNewResponsey;
+ BszSet; X NewResponse;; + [334SUD;
+ BssSet;; X SUD; + BsglNewResponse;;
X SUD; + P37Set;; X NewResponse; x SUD;

Models 1 and 2 are nested in their fixed effects, permit-
ting a likelihood ratio test of the overall effect of SUD
status on performance accuracy trajectories (Table 2).

RESULTS

Participants learned two sets of (Familiar) S-R associa-
tions during an initial HABIT training session, then re-
turned for a HABIT testing session broken into two
epochs: an initial learning epoch in which participants
both executed the previously learned (Familiar) S-R asso-
ciations and learned two new (Novel) sets of S-R associ-
ations, and a subsequent “relearning” epoch, in which
the established S-R contingencies for one of the Familiar
S-R sets and one of the Novel S-R sets changed (Figure 1).
During the relearning epoch, the previously correct re-
sponse to the stimuli in the changed sets is met with a
punishment instead of a reward, reducing the value of
selecting the previously learned action in response to
those stimuli; this change in response contingency al-
lowed us to quantify perseverative errors as an index of
habitual responding. The learning and relearning epochs
were each divided into six segments, each in turn con-
sisted of three randomly ordered blocks of S-R set types
(18 trials per block). Thus, at the onset of the relearning
epoch, participants have completed 324 trials for each of
the Novel S-R sets and approximately three times as many
trials for the Familiar sets (average: 1038 trials; 95% CI
(952, 1124]).
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Table 2. Fixed Effect Estimates (Top) and Variance—Covariance
Estimates (Bottom) for Models of the Predictors of Learning
Behavior

Parameter Model 1 Model 2
Fixed Effects

Intercept 0.95%* (0.08) 0.91#* (0.10)
Set 0.33%* (0.03) 0.24%* (0.04)
Trend1 0.23** (0.02) 0.23%* (0.02)
Set x Trendl —0.12%* (0.01)  —0.12%* (0.01)
Dropoff —0.53%* (0.07)  —0.48%* (0.08)
Set X Dropoff —0.01 (0.06) 0.02 (0.07)

Dropoff x
NewResponse

—0.66%* (0.04)  —0.69%* (0.05)

Set X Dropoff x 0.33** (0.06) 0.39%* (0.07)

NewResponse

ChangeTrend —0.13*%* (0.02)  —0.15%* (0.02)

Set X ChangeTrend 0.07#* (0.02) 0.10** (0.02)

NewResponse X 0.11#* (0.01) 0.15%* (0.02)
ChangeTrend

Set X NewResponse X —0.01 (0.02) —0.03 (0.03)
ChangeTrend

Age (centered) 0.01 (0.01) 0.01 (0.01)

IQ (centered) 0.002 (0.01) 0.01 (0.01)

SUD 0.13 (0.18)

Set X SUD 0.28%* (0.07)

Trendl X SUD 0.02 (0.03)

Set X Trendl X SUD 0.01 (0.02)

Dropoff X SUD —0.14 (0.13)

Set X Dropoff X SUD —0.11 (0.13)

Dropoff X NewResponse 0.10 (0.09)
X SUD

Set X Dropoff x —0.17 (0.13)
NewResponse X SUD

ChangeTrend X SUD 0.04 (0.04)

Set X ChangeTrend X —0.09* (0.04)
SUD

NewResponse X —0.09* (0.03)
ChangeTrend X SUD

Set X NewResponse X 0.08 (0.04)
ChangeTrend X SUD

Variance of Random Effects

Intercept 0.40 0.38

Trend1 0.01 0.01

Changetrend 0.01 0.01

Dropoff 0.16 0.15
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Table 2. (continued)

Parameter Model 1 Model 2
Correlations between Random Effects

Trend1/intercept 0.05 0.05
Changetrend/intercept —0.04 —0.04
Changetrend/trend1 —0.01 —0.01
Dropoff/intercept —0.14 -0.13
Dropoff/trend1 -0.03 —0.02
Dropoff/changetrend 0.01 0.01
—2*]og-likelihood 23,279.02 23,207.43%*

Standard errors are in parentheses. Set denotes the familiar versus novel
set type variable, with novel set type as the reference category. Trend1
indicates the slope of performance during precontingency change time
points. Dropoff signifies the difference in performance pre- and post-
contingency change. NewResponse indicates a change in the correct
response as a result of devaluation. Changetrend is the variable denoting
the change in postchange performance relative to pre-change perfor-
mance. The random parameters represent the variance and covariance
estimates generated from inclusion of random effects in the model. The
—2log-likelihood demonstrates the value for model fit.

*p < .05.
**p < .001.

Behavioral Performance during Training Session

During the initial training session, participants were re-
quired to reach a performance criterion of 90% accuracy
for each S-R set. These sets are designated as Familiar in
the subsequent learning and relearning epochs. Set order
was counterbalanced across participants, and set order
did not differ between groups, X2(1) = 0.40, p = .53.
Training to criterion took an average of ~25 min, with
no significant difference between groups in the number of
blocks to criterion (Ctrl: 11 blocks; SUD: 9 blocks; 40 trials
per block; F(3, 56) = 0.67, p = .57). Learning the associa-
tive rules for the second S-R set was always more rapid and
also did not differ significantly between groups (Ctrl: 4 blocks;
SUD: 4 blocks; F(3, 56) = 0.39, p = .76). Thus, before return-
ing for the testing session, training performance between
groups was equivalent. Moreover, the time between the
training and testing sessions did not differ significantly
between groups (Ctrl: 10 days; SUD: 8 days; #(60) = 1.09,
p = 29).

Behavioral Performance during Testing Session—
Model 1: Baseline Model without SUD Status

We found no significant main effects of age or IQ in the
baseline GLMM fit to the performance data (Table 2). Dur-
ing the learning epoch, we observed a significant interac-
tion between set type and time before S-R contingency
changes (p < .001; “Set X Trendl,” Table 2), indicating
that, as expected, performance improved more over time
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in the Novel S-R sets relative to the Familiar S-R sets.
Somewhat surprisingly, the performance drop-off effect
after contingency change was greater for Novel S-R sets
with changed responses contingencies relative to Familiar
S-R sets with changed responses contingencies (p < .001;
“Set X Dropoff X NewResponse,” Table 2).

During the relearning epochs the difference in learn-
ing rate interacted with S-R set type, with unchanged
Novel S-R sets showing a shallower rate of improvement
(p < .001; “ChangeTrend,” Table 2), which was less
pronounced for unchanged Familiar S-R sets (p < .001;
“Set X ChangeTrend,” Table 2). This difference in learn-
ing rate between epochs also differed between S-R sets
with changed versus unchanged response contingencies
(p < .001; “NewResponse X ChangeTrend,” Table 2).
For changed S-R sets, the rate of relearning was steeper
than that observed during the learning epoch, in contrast
to the shallower relearning rate for unchanged sets.

Model 2: Including SUD Status

Across both epochs, a model including group as a perfor-
mance predictor (Model 2, Table 2) fit the data signifi-
cantly better than did an identical model excluding
group as a predictor (Model 1, Table 2; p < .001). This
result indicates that presence or absence of an SUD his-
tory accounted for significant variability in HABIT perfor-
mance across individuals. As described below, this result
does not reflect a performance deficit in the SUD group.

To further dissect HABIT performance, we first evaluated
the initial learning epoch. Task performance improved
over the course of the epoch, with greater improvement
for the Novel S-R sets (Figure 2; p < .001, “Set X Trend1,”

Table 2). As shown in Figure 2, participants executed Famil-
iar S-R sets more accurately than Novel S-R sets, a distinc-
tion that was heightened in the SUD group. The groups did
not differ in terms of performance improvement during
the initial learning epoch (p = .50; “Set X Trendl X
SUD,” Table 2), but an SUD history predicted more accu-
rate execution of Familiar S-R sets (Figure 2, magenta lines;
p < .001; “Set X SUD,” Table 2). Thus, an SUD history
predicts intact ability to form new S-R associations and a
somewhat heightened ability to accurately execute estab-
lished S-R associations.

At the outset of the relearning epoch, performance im-
mediately declined for all sets in both groups as shown in
Figure 3 (right). As in Model 1, the changed—unchanged
S-R contingency contrast was more pronounced in the
Novel S-R sets (yellow) relative to the Familiar S-R sets
(magenta; p < .001; “Set X Dropoff X NewResponse,”
Table 2); SUD status did not significantly interact with
these parameters (Table 2). This finding indicates that
both groups show evidence of overtraining in the Familiar
S-R sets relative to the Novel S-R sets, which is reported to
facilitate reversal learning for S-R tasks (McLaren et al.,
2014). This is consistent with the fact that participants
completed two to three times as many trials for the Famil-
iar S-R sets relative to the Novel S-R sets (n = 324 trials
per set). As is evident in Figure 3, performance improved
over the course of the relearning epoch, with shallower
rates of increase relative to the initial learning epoch
for unchanged, Novel sets (p < .001; “ChangeTrend,”
Table 2), an effect that did not differ by group (p = .35;
“ChangeTrend X SUD,” Table 2). For Novel sets with chan-
ged S-R contingencies, control participants demonstrated
steeper rates of performance improvement postchange
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relative to prechange (p < .001; “NewResponse X Change
Trend,” Table 2). In contrast, the SUD group showed a
shallower rate of improving performance for Novel
changed sets postchange relative to prechange. For Famil-
iar unchanged sets, the control group demonstrated a

steeper rate of improvement in the relearning epoch rela-
tive to the prechange epoch (p < .001; “Set X Change
Trend,” Table 2). During relearning, the SUD group
showed significantly shallower rates of performance im-
provement for unchanged Familiar S-R sets (p < .05;

A C
Pre Post Pre Post
1 . 100 '
S-R Contingency Change S-R Contingency Change
0.90 A 90 -
0801 ] {[-'I
¢"}-- L>)‘
0.70 - @
5
3 060 Q
9 <
5 050 50 1
8 8
<‘() 0.40 - D 401
k°)
0301 0 304
Ctrl SUD o Ctrl SUD
0.20 1 Change | == | === 201 Change | == [ ===
0.104 NoChange| — [ """ 104 NoChange| — [ ="
0 T T T T T T T T T T 0 T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 12 12 3 4 5 6 7 8 9 10 11 12
Run Run
B D
Pre Post Pre Post
1 S-R Contingency Change 100 S-R Contingency Change
0.90 A 90 -
0.80 80
7)
0.70 4 @ 701
5
3 060 9 601
i <
5 050 50
8 8
& 040- £ w0l
ko)
030 0 301
o
0.20 Ctrl SUD 20- Ctrl SUD
Change | — | oo Change .
0107 No Change | — | === 109 No Change [ — | ===
0 T T T T T T T T T T 0 T T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10 11 1 1 2 3 4 5 6 7 8 9 10 11 1
Run Run

Figure 3. Mean accuracy values during pre- and postchange task performance. Solid lines represent the control group and dashed lines represent
the SUD history group. Overall, a dropoff in performance occurred in blocks with changed response contingencies and performance improved
over the course of relearning (“Post” panels; Table 2); the rate of relearning compared with the initial (“Pre”) learning rate was dependent on group
status, set type, and change status (Table 2). (A) Panels depict performance in Familiar sets (magenta) during pre- and postchange. Dark blue lines
in the right panel (“Post”) indicate performance in the set with unchanged response contingencies during the relearning phase; performance in
the response-changed set shown in magenta. (B) Performance in Novel sets (yellow) during pre- and postchange. Black lines in the right panel
(“Post”) indicate performance in the set with unchanged response contingencies during relearning; performance in the response-changed set shown
in yellow. Performance dropped more dramatically after response change for Novel sets relative to Familiar sets (Table 2). Additionally, the
control group showed steeper learning rates for Novel changed sets relative to the SUD group. Corresponding model predicted values are shown
in panels C and D.
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“Set X ChangeTrend X SUD,” Table 2), whereas the inter-
action between SUD status, set type, contingency change,
and the change in learning rate in the relearning epoch
was not significant (p = .08; “Set X NewResponse X
ChangeTrend X SUD,” Table 2). To summarize, S-R contin-
gency change did not reveal a global impairment in re-
sponse flexibility or inhibitory control among people with
an SUD history. In fact, for the changed Novel S-R set, the
SUD group’s performance was less impaired than that of
the control group immediately following contingency
change, resulting in a more rapid performance recovery
for the SUD group (Figure 3, yellow dashed line).
Responding to a stimulus with an action that is no lon-
ger valued (i.e., no longer positively reinforced) is taken
as an indicator of habit-based, rather than goal-directed,
responding. Thus, to quantify the habitual nature of re-
sponding after response contingency change, we eval-
uated the percentage of perseverative errors during the
relearning epoch. A one-way ANOVA between group for
each set type indicated significant differences between
groups for the overall percentage of perseverative errors
for the Familiar set type (p = .004), but not for the Novel
set type (p = .43). These results reflect the fact that
when trying to replace the well-established Familiar S-R
associations, errors made by the SUD group were more
apt to be perseverative errors (p = .002; Figure 4). No
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Figure 4. Postchange percentage of perseverative errors by group for
S-R sets. The percentage of perseverative errors in the Familiar set
(magenta) with changed response contingencies significantly differed
by group, with SUD history participants making incorrect responses
that were perseverative in nature, F(3, 58) = 4.88, p = .004. In contrast,
the percentage of perseverative errors in the Novel set (yellow) with
changed response contingencies did not differ between groups, F(3,
58) = 0.93, p = .43. Error bars represent SEM.

such group difference was observed for replacement of
more recently established Novel S-R associations (p =
.146; Figure 4). These findings indicate the more habitual
nature of responding in the Familiar S-R sets among SUD
participants.

To evaluate the contribution of abused substance type
to perseverative responding during S-R relearning, we
stratified SUD participants into two categories: history
of stimulant dependence (zz = 11) or no history of stim-
ulant dependence (z = 11). We found a significant
difference in perseverative errors during Familiar S-R re-
learning (Kruskal-Wallis test, p = .009; Figure 5, pink bars),
but not during Novel S-R relearning (p = .182; Figure 5,
yellow bars). Post hoc tests (Bonferroni corrected, p <
.025) demonstrated that participants with or without a his-
tory of stimulant dependence made significantly more per-
severative errors during relearning of Familiar S-R sets
relative to controls (stimulant history, p = .007; no stimu-
lant history, p = .009). However, only the stimulant depen-
dence group showed a trend toward more perseverative
responding during Novel S-R relearning relative to controls
(stimulants; p = .038; no stimulants; p = .342). The results
in the Novel condition suggest that stimulant addiction
may be associated with an even more rapid transition to
habitual responding.

DISCUSSION

We demonstrate that people with SUDs learn new S-R
associations as well as control participants do and can
flexibly adapt newly learned S-R associations but are spe-
cifically impaired in overcoming well-learned S-R associa-
tions. Notably, those with SUDs differ from controls only
in terms of perseverative errors committed during well-
established S-R replacement, indicating the more habit-
based nature of their responses. These findings suggest
that people with a history of an SUD more rapidly acquire
habitual responding outside the drug-taking domain.

Prior Studies Linking Habit and Addiction

Despite extensive investigation of drugs of abuse and
habit in animal models, modest translation of these ex-
perimental paradigms to human studies has occurred
to date. Young, light-smoking adults will pursue both cig-
arette and chocolate rewards via goal-directed strategies
(Hogarth & Chase, 2011). Nicotine dependence was low
in this sample; however, Hogarth, Chase, et al. (2012)
made similar findings in a sample of daily and nondaily
smokers, in addition to finding a positive correlation be-
tween motor impulsiveness and habitual responding.
These studies suggest that habitual drug consumption
may associate with personality factors that predispose
individuals toward habit-based responding.

Hogarth and colleagues have also found that acute
alcohol intake renders the selection strategy for both
water and chocolate rewards habitual (Hogarth, Attwood,
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Figure 5. Postchange percentage of perseverative errors by abused
substance type group for S-R sets. We categorized participants according
to substance dependence history as follows: no history (control), no
stimulant dependence (alcohol or opiate dependence; “No Stims”), or
stimulant and alcohol dependence (stimulants; “Stims”). Overall
nonparametric comparison of the three groups indicated a significant
difference in the percentage of perseverative errors for the Familiar set
(magenta), X*(3) = 11.67, p = .009. The groups did not differ in terms
of the percentage of perseverative errors for the Novel set (yellow),
x2(3) = 4.86, p = .182. Post hoc tests corrected for multiple comparisons
(p = .025) demonstrated that, compared with controls, participants with
a history of stimulant dependence committed a higher percentage of
perseverative errors for both the Familiar set (z = 2.69, p = .007) and the
Novel set (z = 2.07, p = .038). In contrast, participants with no history of
stimulant dependence committed a higher percentage of perseverative
errors when compared with controls only in the Familiar set (z = 2.60,
p = .009), not in the Novel set (z = 2.69, p = .342).

Bate, & Munafo, 2012), which is consistent with data
showing that exposure to alcohol potentiates habitual re-
sponding in rats (Corbit et al., 2012). A recent fMRI study
of alcohol-dependent patients in an instrumental choice
task (de Wit, Niry, Wariyar, Aitken, & Dickinson, 2007)
found evidence of preferential S-R based responding,
rather than goal-directed actions, in alcohol-dependent
individuals relative to controls (Sjoerds et al., 2013). Fur-
thermore, relative to controls, the alcohol-dependent
group increased activation of the posterior putamen
and reduced vmPFC activation during instrumental choice.
Although these data are consistent with the animal litera-
ture associating chronic exposure to drugs of abuse with
an overreliance on S-R response strategies, many of the
alcohol-dependent patients in Sjoerds et al.’s study were
concurrently using psychoactive medications for depres-
sion and anxiety disorders, precluding unequivocal attribu-
tion of group differences solely to alcohol dependence.
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Regardless, these results point to neural correlates within
frontostriatal circuits for enhanced reliance on S-R versus
goal-directed actions. Such findings enable strong predic-
tions about expected differences between people with
SUDs and healthy controls in terms of neural activation
associated with response selection in the HABIT.

Neurobiology of Habit in Humans

Although the neural bases of behavioral differences in S-R
learning among people with SUDs is largely unexplored,
the SUD neuroimaging literature suggests that alterations
in frontostriatal circuit recruitment underlie atypical
behavior in SUDs (Ersche et al., 2012; Konova et al.,
2012; Goldstein & Volkow, 2011; Koob & Volkow, 2010;
Park et al., 2010; Kalivas, 2008; Olausson et al., 2007).
Although this work has not investigated habits per se, it
logically follows that impaired frontal control of striatal
output signals could yield overreliance on striatal habit
circuits. Drugs of abuse may alter frontostriatal circuitry
(Izquierdo & Jentsch, 2012) such that frontal input to
the striatum can no longer effectively act as a “switch”
to regulate the contribution of brain signals for auto-
matic, habitual responding versus goal-directed action
(Smith & Graybiel, 2013; Smith, Virkud, Deisseroth, &
Graybiel, 2012).

A unique aspect of the HABIT paradigm is the ability to
measure behavior during attempts to overcome habitual
responding; using perseverative errors as an index of
habit-based responding and continuing task conditions
that require goal-directed responding allows us to mea-
sure the flexibility of behavior over an extended period
after response contingency change. Essentially, we are
able to measure the ability to “break” habits that have
been formed within this task. The ability to change or
“break” habitual behaviors has not directly been tested
in humans to our knowledge, but converging evidence
from both recent animal and human studies relate drugs
of abuse and frontostriatal circuitry to the regulation of
behavioral change. In primates, prolonged cocaine intake
profoundly impairs S-R relearning (Jentsch, Olausson,
De la Garza, & Taylor, 2002). These data suggest that
chronic drug exposure potentiates habitual response se-
lection and further supports a role for extended sub-
stance abuse in altering the circuits underlying S-R
learning and replacement. In rodents, optogenetic per-
turbation of the infralimbic portion of the mPFC results
in a switch from a previously to recently learned behavior
and thus facilitates the replacement of habitual behaviors
(Smith et al., 2012). Computational modeling of human
choice behavior in which prefrontal brain regions “arbi-
trate” between habit-based or goal-directed responses
further supports these animal findings (Lee, Shimojo, &
O’Doherty, 2014). TMS applied to the DLPFC shifts the
balance between goal-directed versus habit-based re-
sponse selection strategies (Smittenaar, FitzGerald,
Romei, Wright, & Dolan, 2013; Knoch, Brugger, & Regard,

Volume 28, Number 7



2005). Taken together, these studies provide compelling
evidence for the regulation of behavioral control via fron-
tostriatal circuitry. An important future direction is to deter-
mine whether abnormal functioning of these same
frontostriatal circuits underlies the atypical S-R learning
and replacement we find in people with a history of
addiction.

It is important to note that elevated perseverative er-
rors in the changed Familiar S-R sets in the SUD group
is unlikely to reflect impaired response inhibition, as in-
hibitory impairments should have manifest in the Novel
condition as well as the Familiar condition based on nearly
equal performance in the Novel condition before the con-
tingency change, particularly among the SUD group. How-
ever, we only observed this deficit in the highly practiced
Familiar condition in which the SUD group appears to
have transitioned to a more automatic S-R strategy. One
could make the case that suppressing a more automatized
action requires greater response inhibition and that only
under this higher “inhibitory load” condition did a deficit
in the SUD group emerge; however, this argument merely
lends support to our interpretation of a more rapid transi-
tion to an automatic response strategy in people with an
SUD history.

Possible Role of Stress in the SUD Group Findings

Although we make the case above that atypical frontos-
triatal function likely underlies the apparent earlier
switch to dominance of habit-based responding in the
SUD group, a growing body of literature shows that stress
can potentiate habit-based responding in both humans
(Schwabe & Wolf, 2010, 2011, 2013; Schwabe et al.,
2007) and animal models (Dias-Ferreira et al., 2009). This
tendency for stress to shift the balance of behavior from
goal-directed to habitual has been investigated pharma-
cologically in humans, with evidence indicating roles
for both elevated cortisol levels and increased noradren-
ergic activity (Schwabe, Tegenthoff, Hofftken, & Wolf,
2012; Schwabe, Hoffken, Tegenthoff, & Wolf, 2011).
Moreover, neuroimaging research has found that partici-
pants subject to chronic psychosocial stress fail to change
responses after outcome devaluation, indicative of habit-
based actions (Soares et al., 2012). The stressed par-
ticipants in that study showed greater activation of the
putamen during response selection after devaluation, rel-
ative to nonstressed controls, consistent with prior links
between the putamen and habitual responding (de Wit
et al., 2009; Tricomi et al., 2009). Notably, the behavioral
and neural effects of stress in the Soares study were re-
versible, declining after the stressful period ended; this
demonstrates the plasticity of the neural systems regulat-
ing habitual actions and holds promise for interventions
to facilitate behavioral change of ingrained behaviors.
The evidence that stress can promote habit-based re-
sponding, together with evidence of dysregulated hypo-
thalamic-pituitary axis function in individuals with SUDs

(Lijffijt, Hu, & Swann, 2014; Porcu, O’Buckley, Leslie
Morrow, & Adinoff, 2008; Kreek, Nielsen, Butelman, &
LaForge, 2005; King et al., 2002; Anthenelli, Maxwell,
Geracioti, & Hauger, 2001), suggest that the behavioral
differences that we observed in the SUD group could re-
flect greater stress levels in the SUD group. We did not
collect physiological or subjective report measures of
stress for this study, although we did collect measures
of anxiety; the groups did not differ in terms of state
anxiety, but the SUD group did report slightly higher
levels of trait anxiety (Table 1), suggesting possibly high-
er levels of chronic stress in the SUD group compared
with controls. Stress is well known to precipitate relapse
(Sinha, 2012), and although the underlying mechanisms
are not well understood, it is tempting to speculate that a
contributing factor could be stress-induced promotion of
habitual responding in people with SUDs. This question
can be addressed with the HABIT paradigm, which may
ultimately identify new therapeutic approaches to relapse
prevention.

Study Limitations

The observation of more habit-based responding in the
SUD group could be a consequence of chronic drug ex-
posure or a predisposing trait that contributes to SUD
vulnerability; these alternatives cannot be disentangled
by the current study. If this heightened propensity to es-
tablish habits in people with SUDs predates the SUD, it
would represent a promising, unexplored intermediate
phenotype for SUDs. A further limitation is the SUD
sample studied. Participants were recruited based on
any lifetime history of an SUD (including an alcohol use
disorder), which yielded a heterogeneous population.
Given the distinct effects of differing abused substances
on neurotransmitter systems, it is rather unlikely that the
behavioral effects we observed reflect common neural
dysfunction caused by chronic substance abuse. How-
ever, biological predispositions play a large role in SUDs
and that heritability is not necessarily substance-specific
(Hicks, Iacono, & McGue, 2012). As such, one would ex-
pect to find common neural substrates across different
substance abuse categories underlying shared behavioral
deficits that represent preexisting vulnerability factors.
Our finding here of propensity to more rapidly transition
to habit-based responding could theoretically contribute
to establishing and/or maintaining compulsive, habitual
substance use and, as such, could theoretically play a role
as a preexisting risk trait. Be that as it may, this heteroge-
neity, coupled with our small sample size, precludes
drawing conclusions regarding specific substances or
polysubstance use. The range of disease severity was also
limited in our sample, with all participants falling at the
severe end (range = 6-11; Hasin et al., 2013); thus, we
were unable to assess whether SUD severity correlates
with greater propensity for habitual responding. Another
limitation was our exclusion of individuals currently using
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any psychoactive medications or with comorbid mental
health disorders, neurological conditions, or below nor-
mal IQ. The advantage of this “clean” sample is our confi-
dence in attributing group differences in behavior to SUD
history, but among the SUD population at large, comor-
bidities and psychoactive medication use is common. The-
se exclusion criteria also likely and substantially increased
our power to detect group effects, as different comorbid
conditions may have either amplified or compensated for
excess habitual responding; psychoactive medications may
have similarly increased variance. Finally, our participants
with SUDs were abstinent from substance use, and as
such, their engagement of motivational circuitry and the
ability to form habitual associations might be substantially
different from people in the active phase of an SUD. These
limitations point to key future avenues of research that will
expand the scope of our understanding of habit-based
responding in addiction.
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